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The continuation of electronic energy bands in the neighborhood of symmetry points is dis-
cussed in terms of explicit expressions derived within the Green’s-function method. The ac-
curacy and convenience of these formulas are demonstrated in the calculations of specific band
parameters at various symmetry points of the Brillouin zone for degenerate as well as non-

degenerate states in both nonrelativistic and relativistic problems.

proach are briefly discussed.

Methods of continuing the band structure E,(k)
in the neighborhood of a point K, at which E(K;) is
known are of considerable interest both in theoret-
ical and semiempirical contexts. Standard K-p
perturbation theory gives a straightforward expan-
sion for a nondegenerate Bloch state of band index
n and wave vector K, in terms of the momentum
matrix elements, p,,(K), and the inverse effective-
mass tensor, which is given by the well-known f-
sum rule’

m (n)_ _?_ ! pg.ﬂﬂ'(k.o)p,im'n(ED)
(7'”*>u —6”+(m>Re§’) E, (k) -E,. (k) ° )
This result and the corresponding formulas for
degenerate band parameters are quite general and
they have been useful in many aspects of solid-state
theory. Nevertheless, they do not provide a prac-
tical means for accurately calculating the band pa-
rameters since the evaluation of the sum over ex-
cited states in (1) requires, in general, an appre-
ciable number of energy eigenvalues and a large
number of interband momentum matrix elements
which are generally unavailable.

A more tractable result for the effective mass
at the center of the Brillouin zone was obtained by
Bardeen? within the spherical approximation. Bar-
deen’s formula is accurate and simple since it in-

Applications of this ap-

volves only the logarithmic derivatives of the s and
p radial functions evaluated on the equivalent sphere
at the energy of the lowest I'y state. The spherical
approximation, however, used in this approach is
inapplicable to states other than the s-like I'; state
of monatomic cubic crystals. In contrast, the gen-
eralization of Bardeen’s formula given by Cohen
and Ham® applies to any symmetry state; however,
the evaluation of the surface integral, which ap-
pears in their formula to replace the sum over ex-
cited states in (1), appears to be a difficult compu-
tational task and to our knowledge it has not been
carried out for any specific calculations.

In this paper we present and evaluate explicit ex-
pressions for the effective-mass parameters at
various symmetry points in the Brillouin zone for
degenerate as well as nondegenerate bands in both
nonrelativistic and relativistic problems. These
results, which are derived within the framework
of the Green’s-function method* (GFM), are both
very accurate and very convenient to evaluate and,
we believe, will be quite useful. That the GFM
should be useful in this connection is not surprising
in view of its unsurpassed effectiveness in deter-
mining E(K) for crystal potentials which can be ap-
proximated by the muffin-tin form.

The GFM dispersion relation is given by
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det[By .« (E, K) +06,.E'2 cotn,]=0 , (2

where the index L(=1, m) labels the partial-wave
components employed in the expansion of the wave
function inside the inscribed sphere. Two features
of (2) are to be noted here. First, the effects of
the potential on the. dispersion law, which are in-
corporated in the phase shifts 7;, are completely
separated from the effects of crystal structure,
which are described by the structure-dependent
terms By (E, K). Second, as has been amply de-
monstrated, ° only the angular momentum compo-
nents with / = 2 are necessary to achieve high ac-
curacy in the calculation of E(K); only these com-
ponents will be retained in the results of this work.
This rapid convergence resulting in a secular de-
terminant of very small order, which can be re-
duced even further by symmetry, together with the
separation of the potential- and structure-dependent
terms make the GFM dispersion relation an ideal
base for accurate and convenient expansions near
symmetry points. In order to achieve the desired
results it is only necessary to suitably expand the
secular equation about the eigenvalue at K;, which
we take to be a symmetry point. We define the ex-
pansion of the By ;. in a given direction 8k (chosen
to best exploit symmetry) by

By (E, Ky+06K) =By 0 + kB + 0k*Bi2s ++ -,

(3)
where the expansion coefficients B{:?, etc., eval-
uated at K, can be computed (and tabulated once and
for all for a given crystal structure®) as easily as
the structure constants themselves.

The expansion of (2) about the s-like I'; state at
the bottom of the conduction band for monatomic
cubic crystals yields the following simple expres-
sion for the effective mass:

M*(F1):(

m

Fy8F/3E ) @)
(Bso,10)* = F10 Bo00 /e cryy

where F,, =B, ;. +E"?cotn, and the expansion
coefficients B{%;? are to be calculated in the direc-
tion of any internal symmetry axis. This result,
which expresses m*(I'y) in terms of only the s and
p phase shifts, is as convenient as Bardeel;’s for-
mula once the structure terms are evaluated.
Moreover, this formula is more accurate than
Bardeen’s result in that the anisotropic Bloch
boundary conditions are properly taken into account
within the GFM. In fact, this result and all those
to be reported below are exact expressions of the
band parameters for the E(K) given by the GFM
when only the =0, 1, and 2 angular momentum
components are included in the trial functions.

Of more significance than the improved accuracy
for m*(I'y) is the fact that by the same approach
similar results can readily be obtained for sym-
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metry states other than I'j. For example, the ef-
fective-mass parameters for the X, and X; states
for fcc crystals are simply given by

* 9 9 *
m (X2)=_ F /Eand m (X§)=_8F2) /oE
m B3z, 225 m Bje, 220

(5)

where the various terms are to be evaluated at K
=27n/a(1, 0, 0) and E(X,) and E(X;), respectively.
Here, the B{%. are to be calculated in the [100]
direction, and the extra subscripts ¢ and s (for
cosine and sine) indicate that the appropriate lattice
harmonics for these states are of the form Y,
« (Y}, 2 Y Fn), where the ¥,,’s are spherical har-
monics. These formulas express the effective-
mass parameters of these d-like states quite nat-
urally in terms of the / =2 phase shifts.

The extension to degenerate bands is quite
straightforward. Here the parameters needed
to describe the band structure in the neighborhood
of an n-fold degenerate level are contained in a
determinantal equation (of order ») of the form
det(H;; - 156;;)=0. By way of an example, the three
band parameters L, M, and N''7 for the three-fold
I' ;5 state of fcc crystals enter the above secular
equation through Hyy =LkZ+M (k% +k2) and Hy,=Nkqk,
(and cyclic permutations) with A =E — %2 (in a.u.).
These parameters are given in degenerate K-p
perturbation theory in terms of complicated expres-
sions of the type appearing in (1).” However, within
the GFM we obtain very simply

B
L+1=< _22421.229__) 6
0F 55./9E E(I'35) ’ ®)

with similar expressions for M and N. Here
B2, 52. is to be calculated in the [100] direction.
Details will be published elsewhere.

The extension to the relativistic problem is also
quite straightforward, using the relativistic gen-
eralization of the dispersion relation (2).® In this
case the wave function is expanded in terms of spin
angular momentum functions labeled by the rela-
tivistic quantum numbers « and p. The effective
mass for the I'g, state (corresponding to the non-
relativistic T'y state) of fcc crystals is found to be

m*(l“3+)~( & _,®,08_, /OF

(@1+2B5)lAD,12-AD 18,8, )E(r6+) ’
("

where @, =Ag +E'Zcotn, and Ag g =4, .+, With
pn=3. Here the A,, .+, are linear combinations
of the By, ;++ appearing in (2) with appropriate
Clebsch-Gordan coefficients, while the 7, are the
appropriate relativistic phase shifts.

In Table I we compare the band parameters for
a number of different metals, as calculated by
formulas of the type discussed above, versus the

- =



4 EFFECTIVE-MASS
TABLE 1. Band parameters for various symmetry states
of various metals.

Symmetry m*/m m™/m .
state by GFM formula by fitting E k)
Ty, Cu 0.9415 0.9414
Tj%, Cu, L* ~1.298 ~1.298
M -0.7308 -0.731
N 2.799 2.78
T4y, Cu, L* —0.6475 ~0.648
J -0.4389 —-0.439
Xy, Cu, along A 4.450 4.45
X3, Cu, along A 3.519 3.52
Xy, Cu, along A -9.015 -9.01
X5, Cu, along A ~2.320 -2.32
X{, Cu, along A -0,1155 -0.12
Lg, Cu, along A -0.1405 —0.145
lto A 0.2486 0.25
o, 1 1293 L
Ty, Na 0.9701 (g.gzg)b
Ty, K 0.8726 hapsit
T, Pb 0.9555 0.9554
3See Ref. 7

bSee Ref. 9, Table VI.

same quantities obtained by numerically fitting
E(K), calculated by the GFM for the same poten-
tial, (i.e., phase shifts), over a suitable range of
K in the vicinity of the symmetry point in question.
In cases where we can obtain accurate fitted values
with a reasonable effort the agreement is excellent;
however, in those cases where E(K) is parabolic
only over a small region, as in the vicinity of X ;
and L}, the numerical fitting requires very precise
eigenvalues in order to yield values as accurate as
those in the second column. Included in Table I
are the I'; masses for the first three alkali metals
using the phase shifts obtained by Ham through the
quantum defect method and employed by him in his
comprehensive GFM study of the alkali metal fami-
ly.® While the alkali masses obtained from (4)
agree with the fitted values to within less than
0.1%, they differ from the values (in brackets) given
by Ham by as much as 3% in the case of Li. This
is explained by the fact that Ham’s m* values were
obtained from a least-squares fit of the expression
Eo+E,k%+E 2" to the calculated E(K) over a large
range of 2 (sometimes as large as £ of the zone
dimension), while our values give the curvature of
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E(K) at K=0. Thus, they are somewhat different
quantities, and this difference is largest in the case
of Li, where the deviation from parabolicity is the
greatest.

To illustrate the results of Table I we have plotted
in Fig. 1 the band structure of Cu in the [100] di-
rection from the bottom of the s-p conduction band
to energies well above the d bands and the Fermi
level. The dotted curves represent the parabolic
expansions about I' and X using the band parameters
of the second column of Table I. The solid curves
are the energies obtained by the standard GFM.

The substantial range of K, over which there is
close agreement between the two sets of curves for
this relatively complicated band structure, is to
‘be noted. The band which has the smallest range
over which there is close agreement is understand-
ably the 4y band connecting with the p-like X, state.
In this case, where the curvature of E(K) changes
from negative to positive at a value of £ very close
to the zone face, one should not expect a quadratic
expansion to be faithful over a large range of _61'('

=K -K(X). Improved expansions can be achieved
by including the 6%* (and higher-order) terms and
by other variations of the appro/ach, which we are
presently investigating.

In this paper we have outlined a procedure for
expanding energy bands near symmetry points and
we have demonstrated that it is almost trivial to

r A X
- .20 ] T T T T T T 1 T X 1
-30}
- 40t
A

E ( Rydbergs)

1 1 1 1 1 1

(a/27)

1
K (1,0,0)

FIG. 1. Band structure of Cu (Chodorow potential) in
the [100] direction. Solid curves were calculated by the
standard GFM; dotted curves were calculated by using the
effective-mass parameters of the second column of Table
1.
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apply this method in actual calculations of the band
structure over most of the zone using only the
second-order parameters. In fact, one would be
able to obtain a complete picture of the whole spec-
trum by making use of the higher-order expansion
parameters and, if needed, by calculating E(K)
separately only at a few points and in those portions
of the zone that might be inaccessible by the expan-
sion parameters. Such expansions will give the
band structure itself [rather than an interpolation
Hamiltonian whose secular determinant still needs
to be evaluated in order to get E(K)] in terms of
only a small number of parameters. This in turn
will greatly simplify the calculation of such quanti-
ties as the density of states, etc. In addition, this
procedure is well suited to accurately resolve the
detailed band structure of “pockets” of states in
those regions of the zone which are of particular
physical importance. Here we note that expansions
with the relativistic coefficients will accurately
determine the small spin-orbit coupling parameters
which are of critical importance in such contexts
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as magnetic breakdown, g factors, etc. Also, with
appropriate modifications for nonmuffin-tin poten-
tials, it might not be too optimistic, perhaps, to
extend even to semiconductors these selective
studies of important regions of the zone.

What is more important, however, than the cal-
culational merits of this expansion procedure is
the fact that it can be used in semiempirical con-
texts as an interpolation scheme. Moreover, in
contrast with other interpolation schemes where
the adjustable parameters are of no direct physical
significance, the fitting parameters of this s¢heme
are the effective-mass parameters of this work
which are expressed explicitly in terms of the
phase shifts of the real (rather than pseudo) crystal
potential. Therefore, blending these first-princi-
ples formulas with empirical information will put
useful constraints on the phase shifts and thus, in
turn, will provide specific information about the
underlying crystal field.

Finally, we wish to thank Dr. F. S. Ham for
providing the phase shifts for the alkali metals.

*Research supported in part by the U.S. Atomic Energy
Commission.
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Cyclotron resonance has been observed from a fraction of a dog’s-bone orbit in silver under
conditions where the carriers are effectively prevented from making more than two transits

through the skin layer.

In the high-w,7 limit, the properties of such a resonance are shown to

differ significantly from those of a conventional cyclotron-resonance spectrum. The require-
ments on the alignment of the sample surface relative to the crystal axis and on the flatness of

the sample are very severe when the magnetic field points in a symmetry direction.

These re-~

quirements are relaxed by an order of magnitude by a slight misorientation of the magnetic

field.

A conventional Azbel’-Kaner! cyclotron-resonance
experiment measures the cyclotron mass associated
with a closed orbit in % space., A steady magnetic
field is applied parallel to a flat metal surface, and

the resonance is caused by the multiple interaction
between the electromagnetic field and electrons
passing through the skin layer once per revolution,
In the case of a concave orbit, a situation may arise



